28 research outputs found

    Two-Loop Corrections to Large Order Behavior of φ4\varphi^4 Theory

    Full text link
    We consider the large order behavior of the perturbative expansion of the scalar φ4\varphi^4 field theory in terms of a perturbative expansion around an instanton solution. We have computed the series of the free energy up to two-loop order in two and three dimension. Topologically there is only an additional Feynman diagram with respect to the previously known one dimensional case, but a careful treatment of renormalization is needed. The propagator and Feynman diagrams were expressed in a form suitable for numerical evaluation. We then obtained explicit expressions summing over O(103)O(10^3) distinct eigenvalues determined numerically with the corresponding eigenfunctions.Comment: 12 pages, 2 figure

    High-dimensional manifold of solutions in neural networks: insights from statistical physics

    Full text link
    In these pedagogic notes I review the statistical mechanics approach to neural networks, focusing on the paradigmatic example of the perceptron architecture with binary an continuous weights, in the classification setting. I will review the Gardner's approach based on replica method and the derivation of the SAT/UNSAT transition in the storage setting. Then, I discuss some recent works that unveiled how the zero training error configurations are geometrically arranged, and how this arrangement changes as the size of the training set increases. I also illustrate how different regions of solution space can be explored analytically and how the landscape in the vicinity of a solution can be characterized. I give evidence how, in binary weight models, algorithmic hardness is a consequence of the disappearance of a clustered region of solutions that extends to very large distances. Finally, I demonstrate how the study of linear mode connectivity between solutions can give insights into the average shape of the solution manifold.Comment: 22 pages, 9 figures, based on a set of lectures done at the "School of the Italian Society of Statistical Physics", IMT, Lucc

    Plastic number and possible optimal solutions for an Euclidean 2-matching in one dimension

    Full text link
    In this work we consider the problem of finding the minimum-weight loop cover of an undirected graph. This combinatorial optimization problem is called 2-matching and can be seen as a relaxation of the traveling salesman problem since one does not have the unique loop condition. We consider this problem both on the complete bipartite and complete graph embedded in a one dimensional interval, the weights being chosen as a convex function of the Euclidean distance between each couple of points. Randomness is introduced throwing independently and uniformly the points in space. We derive the average optimal cost in the limit of large number of points. We prove that the possible solutions are characterized by the presence of "shoelace" loops containing 2 or 3 points of each type in the complete bipartite case, and 3, 4 or 5 points in the complete one. This gives rise to an exponential number of possible solutions scaling as p^N , where p is the plastic constant. This is at variance to what happens in the previously studied one-dimensional models such as the matching and the traveling salesman problem, where for every instance of the disorder there is only one possible solution.Comment: 19 pages, 5 figure

    Exact value for the average optimal cost of bipartite traveling-salesman and 2-factor problems in two dimensions

    Get PDF
    We show that the average cost for the traveling-salesman problem in two dimensions, which is the archetypal problem in combinatorial optimization, in the bipartite case, is simply related to the average cost of the assignment problem with the same Euclidean, increasing, convex weights. In this way we extend a result already known in one dimension where exact solutions are avalaible. The recently determined average cost for the assignment when the cost function is the square of the distance between the points provides therefore an exact prediction EN=1πlogN\overline{E_N} = \frac{1}{\pi}\, \log N for large number of points 2N2N. As a byproduct of our analysis also the loop covering problem has the same optimal average cost. We also explain why this result cannot be extended at higher dimensions. We numerically check the exact predictions.Comment: 5 pages, 3 figure

    Selberg integrals in 1D random Euclidean optimization problems

    Full text link
    We consider a set of Euclidean optimization problems in one dimension, where the cost function associated to the couple of points xx and yy is the Euclidean distance between them to an arbitrary power p1p\ge1, and the points are chosen at random with flat measure. We derive the exact average cost for the random assignment problem, for any number of points, by using Selberg's integrals. Some variants of these integrals allows to derive also the exact average cost for the bipartite travelling salesman problem.Comment: 9 pages, 2 figure

    The Random Fractional Matching Problem

    Full text link
    We consider two formulations of the random-link fractional matching problem, a relaxed version of the more standard random-link (integer) matching problem. In one formulation, we allow each node to be linked to itself in the optimal matching configuration. In the other one, on the contrary, such a link is forbidden. Both problems have the same asymptotic average optimal cost of the random-link matching problem on the complete graph. Using a replica approach and previous results of W\"{a}stlund [Acta Mathematica 204, 91-150 (2010)], we analytically derive the finite-size corrections to the asymptotic optimal cost. We compare our results with numerical simulations and we discuss the main differences between random-link fractional matching problems and the random-link matching problem.Comment: 24 pages, 3 figure

    Typical and atypical solutions in non-convex neural networks with discrete and continuous weights

    Full text link
    We study the binary and continuous negative-margin perceptrons as simple non-convex neural network models learning random rules and associations. We analyze the geometry of the landscape of solutions in both models and find important similarities and differences. Both models exhibit subdominant minimizers which are extremely flat and wide. These minimizers coexist with a background of dominant solutions which are composed by an exponential number of algorithmically inaccessible small clusters for the binary case (the frozen 1-RSB phase) or a hierarchical structure of clusters of different sizes for the spherical case (the full RSB phase). In both cases, when a certain threshold in constraint density is crossed, the local entropy of the wide flat minima becomes non-monotonic, indicating a break-up of the space of robust solutions into disconnected components. This has a strong impact on the behavior of algorithms in binary models, which cannot access the remaining isolated clusters. For the spherical case the behaviour is different, since even beyond the disappearance of the wide flat minima the remaining solutions are shown to always be surrounded by a large number of other solutions at any distance, up to capacity. Indeed, we exhibit numerical evidence that algorithms seem to find solutions up to the SAT/UNSAT transition, that we compute here using an 1RSB approximation. For both models, the generalization performance as a learning device is shown to be greatly improved by the existence of wide flat minimizers even when trained in the highly underconstrained regime of very negative margins.Comment: 34 pages, 13 figure

    Wide flat minima and optimal generalization in classifying high-dimensional Gaussian mixtures

    Get PDF
    We analyze the connection between minimizers with good generalizing properties and high local entropy regions of a threshold-linear classifier in Gaussian mixtures with the mean squared error loss function. We show that there exist configurations that achieve the Bayes-optimal generalization error, even in the case of unbalanced clusters. We explore analytically the error-counting loss landscape in the vicinity of a Bayes-optimal solution, and show that the closer we get to such configurations, the higher the local entropy, implying that the Bayes-optimal solution lays inside a wide flat region. We also consider the algorithmically relevant case of targeting wide flat minima of the (differentiable) mean squared error loss. Our analytical and numerical results show not only that in the balanced case the dependence on the norm of the weights is mild, but also, in the unbalanced case, that the performances can be improved
    corecore